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The new model of elementary particles as vertical vectors on the principal fiber 
bundle U(3, 2)--* U(3,2)/U(3, 1)• U(1) introduced in Part I is extended to 
higher generations. 

1. INTERACTION VIA LIE BRACKET 

The new theory of elementary particles introduced in Part I (Love, 
t993) was shown to model successfully the interactions of the fundamental 
particles. In this theory, we model the particles as vertical vectors on the 
bundle U(3, 2)/U(3, 1) x U(1) and thus they can be locally represented as 
the productft,  where t is an element of the Lie algebra U(3, 1) • U(1) and 
f is an eigenfunction of the generalized Casimir operators of U(3, 2). We 
call the vector t the algebraic factor and we call f the function factor of the 
particle. These vertical vectors are merely a geometric interpretation of the 
standard "operator valued distribution." In Part I, the algebraic factor of 
the fundamental particles was given. Let ZIj be the matrix with a 1 in the 
/ J  position and zero elsewhere. 

The communication rules are 

[ ZH, ZrL] = g sKZzL-- gILZKs 

The ZH form the Cartan subalgebra and are spectrum generators: 

[Zu, ZIL] = ZIL, [Zn, ZKI] = --ZKI 

where the eigenvalues are the roots. 
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The algebraic factors and the roots of the fundamental particles are 
then as given in Table I. 

As shown in Part I, the roots of the Lie algebra will act as the internal 
quantum numbers. The Z~ eigenvalue is the lepton number, the Z22 eigen- 
value is a new quantum number related to the spin, the Z33 eigenvalue is the 
baryon number, and the Z44 eigenvalue is the electric charge. 

We now begin the task of identifying the algebraic factors of all elemen- 
tary particles. In this paper, we extend the analysis of algebraic factors to 
include the "stable particles" of the Particle Data Group (1984). 

If we can achieve this goal, it will be an indication that the model 
deserves further development. We will not attempt to identify the function 
factors of any particles, but leave that for future installments of this series 
of papers. 

If A and B are particles with the same algebraic factor, we will write 
A =v B (read "A  equals B modulo functions"). We will analyze the stable 
particle table of the particle data group one particle at a time. Once the 
algebraic factors of a few particles are known, decay modes yielding the 
known particles will permit the identification of the Lie algebra factor of 
the other particles and thus a bootstrapping through the tables of particle 
decays. 

In analyzing multiparticle decay processes, it is awkward to compute 
brackets. Instead, we will add the roots of the known particles to obtain the 
roots of unknown particles. When computing brackets, the order of the 
factors is important; change the order and the product either changes sign 
or is zero. There are no such problems with adding the roots. This will 
allow a smooth transition to the more exotic interactions we will analyze 
later. 

Table I 

ZII Z22 Z33 Z44 

v=Z12  I - 1  0 0 
H =  ZI3 1 0 --I  0 

e - = Z t 4  1 0 0 - 1  
9=Z2~ - 1  1 0 0 
n = Z23 0 1 - 1  0 

lr = Z24 0 1 0 - 1 
f l=Z31 - I  0 1 0 

~=Z32 0 -1 1 0 
p -  =Z34 0 0 1 -1  
e+=Z41 -1  0 0 1 
tr+ =Z42 0 -1  0 1 
p+=Z43 0 0 -1  1 
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To illustrate this point, let us compute the bracket [e-, Ve] using the 
roots 

e- =FZI4 1 0 0 -1  

9e=F Z21 - 1  1 0 0 

Adding the roots, we obtain 

0 1 0 -1  

which are the roots of Z24 a s  calculated directly from the matrix representa- 
tion above. Thus, adding the roots identifies the product of the interaction, 
but does not yield the sign. As a further illustration of the method, let us 
analyze the oldest known decay, beta decay: 

n ~ p + e - g e  (1.1) 

The analysis of the decay (1.1) via roots reads 

e- =FZI4 1 0 0 - 1  

9e~--'FZ2�91 - 1  1 0 0 

p+=FZ43 0 0 --1 1 

Thus the sum of the roots of the right-hand side is 

n =F g23 0 1 --1 0 

which are the roots of Z23, the algebraic factor of left-hand side of (1.1). 
Thus, we confirm that the algebraic factor the neutron is Z23. 

Summing the roots works when there are no diagonal elements involved. 
For example, to compute [e-, e +] : 

e -=FZt4  1 0 0 --1 

e +=vZ41 --1 0 0 l 

Adding, 

0 0 0 0 

The roots being all zero, we know that the product is diagonal, but we 
do not know which diagonal element we have. In the same way, the inter- 
action of any particle with its antiparticle yields diagonal elements: 

[ZH, Z:I] = Z . -  Z~j 
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Supposedly, when a particle meets its antiparticle, the result is photons. 
In the algebra above, we see that the result depends on which type of par- 
ticle-antiparticle pair interacts. These diagonal elements are the neutral cur- 
rents (Okun, 1985, p. 53). The massless particles appear on the diagonal, 
and all off-diagonal particles except the neutrino are known to be massive. 
For consistency, we must expect the neutrinos to be massive, although we 
cannot predict their masses now. 

The roots we are working with are the eigenvalues of Z11 (I= 1, 2, 3, 4) 
in the adjoint representation. We would work with any other basis of the 
Cartan subalgebra of u(3, 1). Ramakrishan (1972, 1980) used the linear com- 
binations IKL = (ZxK--ZLL)/2 in his derivation of the generalized Gell- 
Mann-Nishijima relation. Ramakrishnan showed that the spectra of the IKL 
are the proper generalizations of the isotopic spin numbers of su(3). Thus, 
the fundamental numbers are the eigenvalues of the diagonal operators ZjI, 
but the linear combinations may also be important experimentally, as we 
saw with the case of spin in Part I. 

2. EXCITED STATES 

Continuing with the analysis of other particle decays, we will first work 
with excited states of the fundamental particles. To explain the similarities 
between the muon and the electron, these particles must have the same 
algebraic factor and differ only in the function factor. Since the Lie algebra 
factor accounts for all the particle interactions except gravity, the data con- 
firm this observation : "Today we know that the muon behaves like a heavy 
electron and the hypothesis of muon-electron universality introduces the 
same interaction with the coupling constants for both muon and electron" 
(Morita, 1973, p. 237); "the muon is known from its magnetic moment to 
be correctly described as a 'heavy electron'" (Jauch and Rohrlich, 1976, 
pp. 536-537). [:or consistency, the two neutrons Ve and v, also must have 
the same algebraic factor. Then in the decay 

/ 2 -~e  vev, (2.1) 

the function factor of the/2- decays into a lower energy function, the func- 
tion factor of the e-, while the excess energy goes to create what is essentially 
a particle-antiparticle pair. Since it is not exactly a particle-antiparticle pair, 
the correctness of this description of the decay is questionable, so further 
analysis is required. But this analysis can only be accomplished once we have 
the function factors in hand. 

If the neutrinos have a mass, we would expect the heavier neutrinos 
(tau and mu) to decay into the electron neutrino. However, we should 
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not expect neutrino oscillations in that the electron-neutrino will not turn 
spontaneously into a mu-neutrino. 

Barut (1972) argues that the muon cannot be an excited electron since 
we do not observe the decay/.t ~ e)'. According to the present picture, in 
(2.1) the neutrino-antineutrino pair is essentially a photon. This decay may 
occur with the ~' in turn forming a neutrino-antineutrino pair, but in too 
short a time span for present-day technology to detect it. 

The next decay up for analysis is 

re- ~ # -  9~ (2.2) 

The algebraic factors of all of the particles have been identified: 

Adding, 

Ig-=Fe-=pZi4 1 0 0 - 1  

9~ =F ge =F Z21 --1 1 0 0 

1"~- ~'F Z24 0 1 0 --1 

Thus, the identification of the algebraic factor of the pion is confirmed. 
Continuing with the analysis of new decays, let us examine 

K+-*  I.t + V (2.3) 

Modulo functions, we just saw that p+vF, = r  rc +, so (2.3) implies that 

K + =F n+ =V Z42 (2.4) 

We analyze other decay routes of the K + in the Appendix. 
The next decay leads to some interesting consequences and provides 

our first internal check for consistency: 

A ~ p  +re- (2.5) 

p + =FZ43 0 0 - 1  1 

TC--~'FZ24 0 1 0 --1 

Adding 

A= F Z23  0 1 - 1  0 

Thus, A has the same Lie algebra factor as n. So from the decay 

A ~ mr ~ (2.6) 
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we conclude that Jr ~ has all-zero spectrum, i.e., the Lie algebra factor of the 
~r ~ is diagonal. Since y is known to be diagonal, this observation is consistent 
with the known decay 

~r ~ -~ 2y (2.7) 

Since the strangeness number of the A is not zero, an interesting conclu- 
sion is that strangeness, like the muon number, is not an internal quantum 
number. This does not rule out the possibility that the strangeness could be 
an eigenvalue of  one of  the generalized Casimir operators of U(3, 2). We 
limit the present classification of the particles to an analysis of the spectra 
of the four basis elements of the Cartan subalgebra, the roots of the Lie 
algebra. This is the easy part of the classification because the eigenvalues are 
those of  matrices. To complete the classification will require that we know 
the generalized Casimir operators of  U(3, 2) and their eigenfunctions. Since 
the group is of rank 4, including the diagonal dilation operator, there are 
five such operators to deal with, or order 1, 2, 3, 4, and 5, respectively. 
Consequently, the task is highly nontrivial. We expect these Casimi r opera- 
tors to yield invariants corresponding to mass, momenta, magnetic moment, 
plus new quantum numbers. In this paper, only the first steps are taken as 
a justification for pursuing the entire program. 

We now turn to the task of finding the Lie algebra factor of the particles 
in the Stable Particle Table of the Particle Data Group's Tables of Particle 
Properties. We tabulate this information in the Appendix with an analysis 
of other particle decay schemes. Let us now analyze 

E + --. nn "+ (2.8) 

n=FZ23 0 1 --1 0 

~'+=FZ42 0 --1 0 1 

Adding 

~~+=FZ43 0 0 -1  1 

which is the same algebraic factor as the proton. Given this observation, 
decays of  the Y.+ into a proton plus diagonal decay products--a set of 
particles whose net product is diagonal (the sum of the roots is z e r o ) -  
should occur. This may be a particle whose algebraic factor is diagonal or 
a particle-antiparticle pair, or something more complicated. Since the 7r ~ is 
diagonal, such a decay is 

X + ~p+rc ~ (2.9) 
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Since y is diagonal, the observed decay 

X + ~ A y  (2.10) 

implies Z ~ = r  A = r  n = e  Z23. 
To find the Lie algebra factor of  the particles with many  decay routes, 

I will select the decay that is the easiest to analyze. The results tabulated in 
the Appendix show the consistency of  this analysis. 

The three decay modes of  the r,  

allow us to conclude that the re- - 
factor: 

~;-- =F P-- =F K-- =F Z24 0 1 0 

For  the daughter particles in (2. I 1), the roots are 

rr- =F Z24 0 I 0 --1 

Ve=FZ12 1 - 1  0 0 

Adding, we obtain the roots of  the parent:  

r - = F Z I 4  1 0 0 - 1  

The decays 

- -  m 
"t" "* K V 

r - ~ p - v  (2.11) 

r - ~  K - v  

, p , and K -  all have the same algebraic 

- 1  

I / ~  e+e - (2.12) 

K ~ ~ e+e - (2.13) 

involve a particle-antiparticle pair and calculation of  the bracket reveals 
that 

7/=F K ~ =F Zlj -- Z44 

Since K ~ is diagonal, the decay 

D + ~ K~ "+ (2.14) 

allows us to conclude that 

D + 7r + ~ F  ~ F  Z42 

Since D ~ decays into a particle-antiparticle pair, 

D ~ ---, 7r+zr - (2.15) 
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we calculate the bracket  to obtain  

D ~ =F Z22 - Z44 

Because 7/is diagonal,  the decay 

F + ~ r ip  + 

implies that  

F + tr + : F  ~"~-F Z42 

Since D ~ is diagonal,  f rom the decay 

B + ... D~ + 

we conclude 

B + =F rr + : F  Z42 

The part icle-antipart icle pair  appearing in the decay 

B ~ ~ D ~  - 

implies tha t  B ~ = r  D ~ = r  Z22 - Z44. 
A diagonal  daughter  assists us in one more  analysis: 

A+ + .:o 

Since K ~ is diagonal,  we must  have 

A~ + = F p  + 

Since zr ~ is diagonal,  the decay 

E ~ ~ ~r~ 

implies 

'~' = F  A = F  Z23 

Love 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

3. S O M E  C O M P L I C A T I O N S  

All o f  the particles analyzed thus far were excited states o f  one o f  the 
fundamenta l  particles. The particles analyzed f rom here on are not  o f  this 
simple fo rm;  instead they are composi te  particles, some being excited states 
o f  nuclei. 

Since y is diagonal,  the decays 

E - ~ E - y  (3.1) 

[~- ~ E - y (3.2) 
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imply 

E- = r E - ,  ~ -  = e E -  (3.3) 

which shows that the y s  =-, and f~- all have the same algebraic factor. 
Identification of this factor would be easy if Y,- were the antiparticle of I~ +, 
but it is not. The analysis to this point has been effortless; at this stage we 
encounter our first subtlety. Analysis of the I~- decay routes will reveal the 
mystery: 

2;- ~ nrc- (3.4) 

The algebraic factors and roots of the right-hand side of (3.4) are 

n=pZ23 0 1 -1  0 

71~- = F Z 2 4  0 1 0 --I 

Adding, 

0 2 -1  -1  

which is not an entry in Table I. 

Y~- ---, n e -  r (3.5) 

The algebraic factors and roots of the right-hand side of (3.5) are 

n =F Z23 0 1 - 1 0 

e- =FZI4 1 0 0 --1 

f'e =F Z2~ --1 1 0 0 

Adding, 

0 2 -1  -1  

which again is the same as (3.4), but is not an entry in Table I. The E- 
decays yield the same algebraic quantum numbers" 

E- ~ Arc- (3.6) 

The algebraic factors and roots of the right-hand side of (3.6) are 

A=FZ23 0 1 --1 0 

rc-=FZ24 0 1 0 --1 

Adding, 

0 2 -1  -1  
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which is again the same set of numbers, but not an entry in Table I. 

E-  -o A,e- 0 e (3.7) 

The algebraic factors and roots of the right-hand side of (3.7) are 

A =e Z23 0 1 -1  0 

e- =FZI4 1 0 0 - 1  

9 =FZ21 --1 1 0 0 

Adding, 

0 2 - 1  - 1  

which is the same set of numbers, but not an entry in Table I. 

E- ~p+zr  ~r (3.8) 

The algebraic factors and roots of the right-hand side of (3.8) are 

P+ =v 2 4 3  0 0 - -  1 1 

7r-=vZ24 0 1 0 -1  

~r-=rZ24 0 1 0 -1  

Ad~ng,  

0 2 -1  -1  

The numbers obtained from these various decays are consistent, but 
not an entry in Table I. Evidently we have the correct numbers for three 
particles. The decays of the f~- serve to reinforce this conclusion: 

fU ~ A K -  (3.9) 

The algebraic factors and roots of the right-hand side are 

Adding,  

Next ,  f U  ~ E~ - 

A=FZ23 0 1 --1 0 

K-=FZ24 0 1 0 --1 

0 2 -1  -1  

E~ 0 1 -1  0 
(3.10) 

~rg-=FZ24 0 1 0 --1 
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Adding, 

0 2 -1 -1 

So we have confirmed these numbers as the algebraic quantum numbers 
of these three particles. But they are not entries in Table I. Every set of 
numbers encountered heretofore was in that table. The numbers in Table I 
are those numbers arising when two particles interact via the Lie bracket. 
Obviously some other model for the interaction is necessary at this stage. 
Earlier we saw another type of interaction which preserves the quantum 
numbers: the tensor product. The numbers for the E- are consistent with 

~ -  = g/~) R'- 

=r  Z23| 

These numbers are again consistent with the decay 

K - p  + _~ ~ - K +  K ~ 

The roots of the left-hand side are 

(3.11) 

(3.12) 

K - = F Z 2 4  0 1 0 --1 

P+=FZ43 0 0 -1 1 

0 1 -1 0 

while the algebraic quantum numbers of the right-hand side are 

~'~-=FZ23(~Z24 0 2 --1 --1 

K + =F Z42 0 -- 1 0 1 

0 1 --1 0 

showing that the numbers agree before and after the interaction. This analy- 
sis raises another question: Which other particles require the tensor product 
for their description? 

The decay 

+ K - A + +  Ac ~ (3.13) 

with 

A+=FZ43 0 0 -1 1 

K-=FZ24 0 1 0 --1 
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implies that A ++ has the algebraic quantum numbers 

0 -1  -1  2 

Again, this is not an entry in Table I. The double charge also would indicate 
that A § is different from anything so far encountered. Again, these quantum 
numbers can be obtained from a tensor product: 

A++ =F Z42(~Z23(~Z42 (3.14) 

We previously analyzed 

~'~-- ~---F Z23(~)Z24 

The same quantum numbers are obtained with 

•- =v Za4| Z43 | (3.15) 

With (3.14) and (3.15) as evidence, the following conjecture is obvious: 
particles interact via the "tensor force" via an "exchange" of one factor. 
Thus, a particle of type A =FB|174 is possible iff C can interact via 
bracket with both B and D. Then we have three ways to obtain the same 
algebraic quantum numbrs: 

A =F B| C| 

A =FB| 

A =~ [B, C]| 

This leads to the further conjecture that nuclei bond together by the tensor 
interaction with protons interchanging particles with the same algebraic 
factor as the pion such as the IV. Since n =r  [P+, rr-], the nucleus of the 
deuteron is 

n| =r  [P+, rr-] | =pp+| p+] =Fp+|  + 

We see that protons in the nucleus react by exchanging real (not virtual) 
pions. Thus, the new model of matter has tremendous implications for 
nuclear physics. We see that some of the "particles" now thought to be 
elementary are composite. Thus, there is no clear line between nuclear and 
particle physics. In the late 1930s there were several papers along this line. 
Many physicists visualized the nucleus as protons exchanging various parti- 
cles. This model fell into disfavor with most physicists who, believing in 
particle democracy, felt that the neutron was as fundamental as the proton 
and hence the nucleus consisted of protons and neutrons held together by 
the exchange of some other (virtual) particles. I am thus advocating the 
return to the older viewpoint. Kursunoglu (1979) and Barut (1972, 1981) 



Complex Geomelry, Unification, Quantum Gravity. II 101 

have also advocated this return and the interested reader should refer to 
their papers for the history and further consequences of these ideas. 

The above description of interchange deals with the case where a change 
of particle type occurs. There are many interactions in nature where there is 
no change in particle type. What does the present model have to say about 
these interactions? Fortunately, they fit into the "tensor" force pattern where 
the exchanged particles are diagonal (i.e., neutral currents). Thus, to describe 
the electromagnetic interaction of two protons we could write 

[p+, )'4] | =vp + | [ ~"4, p+] 

or, in terms of the Lie algebra factors 

[Z43, Z44] | =F Z43 | [Z44, Z43] 

The electromagnetic interaction of a proton with an electron may be 
described by 

[ZI4, Z44]| ~---F ZI4| Z43] 

Thus the exchange force, familiar from QED, remains in the present 
model. With a suitable geometric reinterpretation, much of standard quan- 
tum field theory will carry over to the present setting. Exactly what does 
and what does not carry over will be the subject of future papers in this 
series. 

4. CONCLUSION 

The analysis of this paper shows that the scheme introduced in Part I 
is at least consistent and promising. There are many questions remaining. 
The use of vertical vector fields instead of Lie algebra-valued forms has 
provided some interesting insights. As we have shown, it is the eigenvalue 
associated with the Lie algebra factor of the vertical vector field that deter- 
mines whether or not that particle interacts via a given force. For gravitation 
to fit into this pattern, the mass, as the gravitational quantum number, must 
be derived from the spectrum of the remaining diagonal operator, Z55, which 
would then be the "graviton." This operator commutes with all the elements 
of u(3, 1), i.e., with all of the algebraic factors of the particles, and thus 
would interact only with the function factor. Every vertical vector field has 
a function factor and thus all particles will interact via gravitation. 

The present model has one thing in common with the quark model; 
both are based on group theory. The original three-quark model was based 
on SU(3), with the quarks being a basis for the three-dimensional space on 
which SU(3) acts. Although SU(3) is a subgroup of U(3, 1), there are no 
quarks in this model, because here the elements of U(3, 1) act on themselves 
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rather than some "internal space." The quark model includes only the had- 
rons; the present model includes the leptons as well and comes closer to a 
truly unified picture. The quark model classifies particles into triplets, octets, 
etc., primarily on the basis of their mass. The present model classifies the 
particles on the basis of their interactions. This led to four superselection 
rules which in turn led to 16 fundamental families of particles. Because we 
have not identified the differential equations satisfied by the function factors, 
the present model does not yet have the predictive power of the quark model. 
But some avenues of research are clearly laid out. 

The physics derived from the geometry must reflect the fact that the 
eigenvalue determines the strength of the interaction. Thus, scaling the geom- 
etry will be important. We will accomplish this goal by assigning units to 
the structure constants of u(3, 2). 

Specifying the Lie algebra factor the particles provides a classification 
based on half of the information that will ultimately be available. Classifica- 
tion based on the Lie algebra factor has accounted for the four superselection 
rules: spin, baryon number, lepton number, and electric charge (Emerson, 
1972). Further classification based on the generalized Casimir operators of 
U(3, 2) is required. We expect that analysis to lead to further relations 
between the function factor and the algebraic factor of the particle. Once 
that is done, we will be able to calculate the masses and the transition 
probabilities. This problem was treated in a similar setting by Barut and 
Kleinert (1967a-c) and by Herrick and Sinanoglu (1972). In the models 
based on compact groups, the Wigner-Eckhart theorem shows that analysis 
of the transition probabilities requires the Clebsch-Gordan coefficients for 
the group. But the Wigner-Eckhart theorem is not valid for noncompact 
groups, and consequently the analysis is neither routine nor straightforward. 

From work done by other researchers, it is clear that the second-order 
Casimir operator will account for the mass-energy relationship. The role of 
the higher-order Casimir operators is not clear simply because there is no 
precedent theory with differential operators of order three, four, and five. 

APPENDIX. THE STABLE PARTICLES 

Using the results of the text, we compare the data from the Tables of 
Particle Properties Stable Particle Table with the model. In the following 
table of decay modes, the daughter particles enclosed in double brackets 
[[,]] are of the same algebraic type as the present, and those enclosed in 
double parentheses ((,)) form a diagonal decay product. Recall that specify- 
ing the Lie algebra factor of the particle is classifying the particles based on 
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only half the ultimate information. The Lie algebra factors lead to superselec- 
tion rules. The algebraic quantum numbers account for the four superselec- 
tion rules listed by Emerson (1972): spin, electric charge, baryon number, 
and lepton number. 

Ve 
V# 
Vr 
T- 

~+ 

[[~-]]((vv)) 
[[e-]]((vv)) 
[pr-v]] 
[[p-v]] 
[[K-v]] 
[[K*-(892) v]] 
[[K*-(1430) v]] 
[pr-v]](p~ 
[[#-]](0')) 
[[e-]]((?')) 
[[~-]l((~-~+)) 
[[e-]l((p-/~+)) 
[[p-]]((e-e+)) 
[[e-]]((e-e+)) 
[[~-]]((~~ 
[[e-]]((n'~ 
[[/~-]]((K~ 
[[e-]]((K~ 
[[~-]]((p~ 
[[e-]]((p~ 
[[~+v]] 
[[e+v]] 
[[~+v]]((~,)) 
[[e+v]]((7)) 
[[e+v]](0r~ 
[[e+ v]]((e+e-)) 
[[~t+v]] 
[[7]](00) 
[[T]]((e+e-)) 
[[~]]((~'))(0')) 
[[e§ 
[[r]]((y))((~))((r)) 
[[e+e-]] 
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rl 

[[v~]l 
[[e+e-l]((p-p+)) 
[[rl]((r)) 
[[~~176176 
[[~~ 
[[~~ 
((~+~-))[[~,]] 
[H]((e+e-)) 
[[~-~+]]((~,)) 
[[e+e-]] 
[[~-~+]1 
[[e+e-]]((zc+lr-)) 
[[~+~-]]((~'))((r)) 
[[~+~-]]((Jr~ 
[[~+~-1] 
[[e+e-]]((~~ 
[[~-~+]]((~~ 
[[~-~+]]((~~ 

Strange mesons 
g+ [[~+v]] 

[[~+]]((~~ 
[[~+]]((~+~-)) 
[[~+]]((~~176 
[[,+vl]((~~ 
[[e+v]]((zc~ 
[[~+v]](6,)) 
[[~+]]((~~ 
[[~+]]((~+~-))((~,)) 
[[t~+v]]((~~ 
[[e+v]l((zr 
[[e + v]]((Jv~176 
lie+ V]]((/~'+/r-)) 
[[~+]]((e-vg +)) 
[[~+v]]((~+~-)) 
[[~+]]((~-V~ +)) 
[[e+v]] 
[[e+v]]((~')) 
[[p+]]((e+e-)) 
[[e+ v]]( ( e+e-) ) 

X~ [[~+~-]1 
[[~~176 
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K~ 

[[~r+~r-]](0,)) 
[[e+e-l] 
[[H](fi')) 
[pr~ 
[pr~176176 
[Pr~176176 
[pr+Tr-]l((~r~ 
[[;r 
[[~:-,u +v]] 
[pr+e-~]] 
[pr-e+vl] 
[br 
[[~~176 
[pr+e-~ll((z)) 
[[Jr+~r-]](0,)) 
[[~~ 
[[7]]((7))1 
[[..-e+l]((Jr~ 
[[~-s~+]l 
[[~-~+11(0,)) 
[[n-s~+]]((~r~ 
[[e+e-]]( ( 7) ) 
[[;rt~ 
[pr+Jr-]]((e+e-)) 

C h a r m e d  s t range mesons  
F + [pr+]]((r 

[[~+]]((rl))((~+~-)) 
[[~+]]((ry))((~r+~r-)) 
[[p+]]((,~)) 

B o t t o m  mesons  

B + [pr+]l((D~ 
[[zc+]l((q))((Tr+D*-)) 

B ~ [[D~ 
[[:r 

C h a r m e d  nons t r ange  mesons  
D + [[~+v]] 

[pr+l]((Tr+K-)) 
[pr+]]((Tr+K-))((Tr~ 
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DO 

[pr+]]((g~ 
[[Jr+]]((g~176 
[[K+v]]((K~ 
[[e+v]]((rc+Ir-)) 
[[zc+ v]]((K+K-)) 
[[K+]l((Tr+~r-)) 
[[~r+]](0r~ 
[[~r+]]((K-'*o)) 
[[K-~+]] 
[[K-~+]]((~~ 
[[R~176 
[[u+u-]] 
[[K+K-]] 
[[/r [[/(,o]]((~o)) 
[[K-p+]] 
[[K~]]((p~ 
[[K-~+]] 
[[K-A~-]] 
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